Artikelini membahas materi tentang alat optik fisika pengertian jenis rumus gambar contoh soal dan pembahasan mata kacamata kamera lup mikroskop teropong. Apabila pembelajaran yang dilakukan adalah a Mengidentifikasi permasalahan tentang bagaimana mencari cara agar air es tetap dingin b Merumuskan permasalahan dan hipotesis.
Dalam gerak melingkar terdapat dua jenis besaran fisika yang mempengaruhi gerak benda, yaitu besaran sudut anguler dan besaran linier tangensial. Lalu apa saja besaran-besaran sudut dan linear tersebut? Berikut ini adalah daftar besaran pada gerak melingkar yang sudah penulis rangkum dalam bentuk tabel. Tabel Besaran Anguler dan Besaran Tangensial pada Gerak Melingkar No. Besaran Sudut Anguler Besaran Linear Tangensial 1 Posisi sudut θ Panjang lintasan s 2 Kecepatan sudut Kecepatan linear v 3 Percepatan sudut α Percepatan tangensial at 4 Periode T Percepatan sentripetal as 5 Frekuensi f Jari-jari R Besaran sudut seperti posisi sudut, kecepatan sudut dan percepatan sudut merupakan besaran vektor. Sedangkan periode dan frekuensi adalah besaran skalar. Untuk besaran linear seperti kecepatan linear, percepatan tangensial dan percepatan sentripetal merupakan besaran vektor sedangkan panjang lintasan dan jari-jari merupakan besaran skalar. Berbicara mengenai vektor pasti tidak pernah lepas dengan arah gerak. Lalu tahukan kalian bagaimana arah besaran sudut dan linear tersebut pada gerak melingkar? Secara umum, untuk besaran sudut atau anguler, arahnya geraknya mengikuti arah gerak benda di sepanjang lintasan yang berbentuk lingkaran atau dengan kata lain ikut bergerak melingkar. Sedangkan untuk besaran linear atau besaran tangensial kecuali percepatan sentripetal arah geraknya selalu menyinggung lingkaran. Dengan kata lain arah gerak besaran tangensial selalu tegak lurus dengan jari-jari lingkaran. Untuk lebih jelasnya, silahkan perhatikan gambar berikut ini. Jika kalian sudah paham mengenai besaran sudut dan linear pada gerak melingkar, sekarang saatnya kita mempelajarai bagaimana hubungan antara besaran anguler dengan besaran tangensial pada gerak melingkar. Hubungan antara kedua besaran tersebut sangat penting dalam menentukan rumus turunan yang diperlukan untuk menyelesaikan persoalan fisika yang berkaitan dengan gerak melingkar. Untuk itu silahkan kalian simak penjelasan berikut ini. 1 Hubungan Antara Posisi Sudut θ dengan Panjang Lintasan s Gambar di atas menunjukkan partikel P bergerak melingkar dengan sumbu tetap O dan jari-jari R. Jika partikel P bergerak dari titik A ke titik B dengan menempuh lintasan busur sepanjang s, sedangkan posisi sudut yang terbentuk antara titik A dan titik B adalah θ, maka diperoleh hubungan rumus sebagai berikut θ = s ……………………… pers. 1 R Dari persamaan 1 kita bisa mendapatkan rumus panjang lintasan lingkaran sebagai berikut s = θR …………………… pers. 2 Keterangan θ = posisi sudut rad s = busur lintasan m R = jari-jari m Persamaan 2 tersebut merupakan rumus hubungan antara besaran sudut yaitu posisi sudut dengan besaran tangensial yaitu panjang lintasan/busur lintasan. Contoh Soal 1 Sebuah benda bergerak melingkar dengan jari-jari lingkaran yang dibentuknya 80 cm. Tentukan posisi sudut dalam satuan radian dan derajat jika benda tersebut menempuh lintasan dengan panjang busur 6 cm. Penyelesaian Dalam radian θ = s/R θ = 6 cm/80 cm θ = 0,075 rad konversi satuan tidak diperlukan karena memiliki satuan yang sama Dalam derajat θ = 0,07557,3° θ = 4,30° 2 Hubungan Antara Kecepatan Sudut dengan Kecepatan Linear v v = s ……………………… pers. 3 t Jika kita subtitusikan persamaan 2 ke persamaan 3, maka kita peroleh rumus kecepatan tangensial pada gerak melingkar sebagai berikut v = θ R …………………… pers. 4 t Karena θ/t = , maka persamaan 4 menjadi v = R ………..…………… pers. 5 Keterangan v = kecepatan tangensial m/s = kecepatan anguler rad/s t = selang waktu s R = jari-jari lingkaran m Persamaan 5 inilah merupakan rumus hubungan antara kecepatan linear/tangensial dengan kecepatan sudut anguler. Contoh Soal 2 Sebuah balok kecil berada di tepi meja putar yang berjari-jari 0,4 m. Mula-mula meja berputar dengan kecepatan sudut 20 rad/s. Karena mengalami percepatan maka kecepatan sudutnya berubah menjadi 50 rad/s setelah bergerak selama 15 s. Berapakah kecepatan linear awal dan akhir balok tersebut? Penyelesaian Diketahui R = 0,4 m 0 = 20 rad/s = 50 rad/s t = 15 s. Ditanya kecepatan linear awal v0 dan kecepatan linear akhir v v0 = 0 × R v0 = 20 × 0,4 v0 = 8 m/s v = × R v = 50 × 0,4 v = 20 m/s 3 Hubungan Antara Percepatan Sudut α dengan Percepatan Linear at at = v ……………………… pers. 6 t Jika kita subtitusikan persamaan 5 ke persamaan 6, maka kita peroleh rumus percepatan tangensial pada gerak melingkar sebagai berikut at = R …………………… pers. 7 t Karena /t = α, maka persamaan 7 menjadi at = αR ………..…………… pers. 8 Keterangan at = percepatan tangensial m/s2 α = percepatan anguler rad/s2 R = jari-jari lingkaran m Persamaan 8 inilah merupakan rumus hubungan antara percepatan linear/tangensial dengan percepatan sudut anguler. Contoh Soal 3 Dari contoh soal 2, tentukan percepatan tangensial balok! Penyelesaian Untuk menghitung percepatan tangensial, kita harus mengetahui dahulu nilai percepatan anguler dari balok tersebut yaitu dengan menggunakan rumus sebagai berikut α = – 0/t α = 50 – 20/15 α = 2 rad/s2 Dengan menggunakan persamaan 8, maka besar percepatan tangensial yang dialami balok adalah sebagai berikut at = αR at = 2 × 0,4 = 0,8 m/s2 4 Hubungan Antara Kecepatan Sudut dengan Percepatan Sentripetal as Dalam gerak melingkar beraturan GMB, percepatan sentripetal atau percepatan radial dirumuskan sebagai berikut as = v2 ……………………… pers. 9 R Jika kita subtitusikan persamaan 5 ke persamaan 9, maka kita peroleh rumus percepatan radial pada gerak melingkar sebagai berikut as = R2 R as = 2R ……………… pers. 10 Keterangan as = percepatan sentripetal m/s2 = kecepatan anguler rad/s R = jari-jari lingkaran m Persamaan 10 inilah merupakan rumus hubungan antara percepatan sentripetal pada besaran linear dengan kecepatan sudut pada besaran sudut. Contoh Soal 4 Sebuah titik berada di tepi sebuah CD yang berjari-jari 4 cm. CD tersebut berputar di dalam CD Player dengan kecepatan sudut 3 rad/s. Tentukan percepatan sentripetal pada titik tersebut! Penyelesaian Diketahui R = 4 cm = 0,04 m = 3 rad/s maka dengan menggunakan persamaan 10, percepatan sentripetal titik tersebut adalah as = 2R as = 32 × 0,04 as = 0,36 m/s2 atau 36 cm/s2 5 Hubungan Antara Periode T, Frekuensi f dengan Percepatan Sentripetal as Ketika suatu benda melakukan gerak melingkar satu kali putaran penuh maka besar sudut tempuhnya adalah θ = 2π, dimana waktu untuk melakukan satu kali putaran adalah periode T, sehingga kecepatan sudut dirumuskan sebagai berikut = 2π ……………………… pers. 11 T Jika persamaan 11 kita subtitusikan ke persamaan 10, maka rumus percepatan sentripetal akan menjadi seperti di bawah ini. as = 2π/T2R as = 4π2R ……………………… pers. 12 T2 Karena 1/T = f, maka persamaan 12 dapat kita tuliskan sebagai berikut as = 4π2f2R ……………………… pers. 13 Keterangan as = percepatan sentripetal m/s2 T = periode s f = frekuensi Hz R = jari-jari lingkaran m Persamaan 12 dan persamaan 13 merupakan rumus hubungan antara percepatan sentripetal atau percepatan radial dengan periode dan frekuensi gerak melingkar. Contoh Soal 5 Sebuah piringan hitam sedang berputar dengan kecepatan sudut 30 rpm. Berapakah percepatan sentripetal sebuah titik putih yang berada 5 cm dari pusat piringan tersebut? Penyelesaian Diketahui = 30 rpm = 30/60 putaran/s = 0,5 putaran/s R = 5 cm = 0,05 m Ditanya as as = 4π2f2R f = 0,5 Hz frekuensi di definisikan sebagai jumlah putaran per detik as = 4 × 3,142 × 0,52 × 0,05 as = 0,49 m/s2. Dengan demikian jika semua persamaan atau rumus hubungan antara besaran sudut anguler dengan besaran linier tangensial kita kumpulkan jadi satu, maka kita peroleh penting dalam kinematika gerak melingkar, yaitu sebagai berikut Nama Besaran Rumus Panjang Busur Lintasan s = θR Kecepatan Linear Tangensial v = R Percepatan Linear Tangensial at = αR Percepatan Sentripetal radial as = 2R as = 4π2R T2 as = 4π2f2R Demikianlah artikel tentang hubungan antara besaran sudut anguler dengan besaran linear tangensial pada gerak melingkar. Semoga dapat bermanfaat untuk Anda. Terimakasih atas kunjungannya dan sampai jumpa di artikel berikutnya.
Perbesarananguler lup untuk mata berakomodasi maksimum dihitung dengan menggunakan persamaan (4), yaitu sebagai berikut. M = 2,5 + 1 = 3,5 Jadi, perbesaran anguler
Coba deh kamu pergi ke lapangan luas, lalu lihat ke sekitar. Seberapa jauh kamu bisa memandang? Ketika kamu melihat pohon di kejauhan, pasti akan kelihatan sangat keciiiiil. Eh, begitu kamu deketin pohonnya, ternyata ukurannya besar. Kok bisa gitu ya? Hal ini, disebabkan oleh perspektif. Lalu, sekarang coba, deh, kamu tengok ke langit. Apa yang kamu lihat? Kalo yang kamu liat jemuran warga, geseran dikit dong. Jemuran sumber Saat kita menatap langit, apalagi di malam hari, pasti hanya terlihat cahaya titik-titik putih. Sama halnya dengan perspektif tadi, titik putih yang sangat kecil ini, ternyata ukuran aslinya besaaar banget. Nah, titik-titik kecil di langit itu, sebenarnya bisa kita lihat dengan alat bantu. Namanya, teleskop atau teropong bintang. Teropong bintang biasanya digunakan oleh para astronomer untuk mencari planet baru. Di alat ini, terdapat dua buah lensa cembung, yaitu lensa objektif yang berada di depan, yang menerima cahaya langsung dari objek. Dan lensa okuler, yaitu lensa yang berada dekat dengan pengamat. Cara kerja teropong bintang adalah dengan metode “pengumpulan cahaya”. Sekarang bayangkan di rumah kamu sedang turun hujan. Lalu, kamu ambil ember dan tampung air hujannya. Pasti, deh, semakin besar ember yang kamu pakai, air yang kamu tampung juga semakin banyak. Nah, prinsip kerja teropong bintang kurang lebih kayak gitu. Tapi yang ditampung bukan air, melainkan cahaya. Tampungan air hujan seperti cara mata dan teropong bintang bekerja sumber Oke, kalau masih bingung. Kita mundur sedikit mengenai cara mata kita bekerja. Sejatinya, mata kita sama kayak “ember” yang menampung air hujan tadi. Bedanya, si air adalah “cahaya” yang ada di sekeliling kita dan ember yang menampung cahayanya adalah pupil mata kita. Cahaya-cahaya yang masuk ke dalam pupil, pada akhirnya ngebuat kita bisa melihat sekitar. Pupil mata sumber Masalahnya, karena ukuran pupil mata kita kecil, cahaya yang masuk hanya sedikit. Teropong bintang, membantu kita mengumpulkan cahaya-cahaya yang tidak jatuh ke mata kita, memfokuskannya, dan mengarahkannya langsung ke mata. Anggap “ember penangkap cahaya” itu diberi lorong, dan di sana, cahaya-cahaya itu dikumpulkan, difokuskan, dan dikirim langsung menuju ke mata kita. Banyaknya jumlah cahaya yang dikumpulkan, tergantung dari area lensa teropong bintang yang kita lihat. Itu artinya, kalau kamu mengubah diameter teropong bintangnya menjadi dua kali lipat lebih besar, kita bakalan dapet cahaya sebanyak 4 kali lipat lebih banyak. Bagaimana Teropong Bintang Bisa Mengumpulkan Cahaya? Oke, sekarang bagaimana caranya si teropong bintang mengumpulkan cahaya supaya bisa masuk ke pupil mata kita? Bukan. Kamu jangan bayangin teropong bintang ini memungut cahaya kayak orang mungut recehan di jalan. Tetapi, membengkokkan cahaya yang ada di sekitar, dan mengarahkannya ke dalam teropong bintang. Mengumpulkan uang receh sumber Cara kerja teropong bintang itu mengubah arah cahaya dari suatu benda. Ya, cahaya selalu akan “berubah” arah apabila pindah dari satu medium ke medium lain. Itu lah kenapa kalau kamu memasukkan sendok ke dalam air, mata kita melihat seolah si sendok itu “patah” atau bengkok. Sendoknya gakpapa, tapi cahaya yang kita lihat bengkok, sehingga membentuk gambaran di kepala kita bahwa sendok yang ada di air itu “berbeda” karena cahayanya belok. Baca juga Avengers Infinity War dan Mengapa Butuh Kostum Baru Spiderman Pembiasan cahaya pada sendok yang masuk ke dalam air sumber Teropong bintang, membelokkan cahaya yang ada di sekitar, mengumpulkannya, dan mengirimnya ke mata kita. Alhasil, planet dan berbagai benda angkasa lain bisa keliatan, deh. Teropong bintang membelokkan cahaya sumber Penggunaan teropong bintang ini bisa dilakukan saat mata berakomodasi maksimum dan saat mata tidak berakomodasi. Kita coba bahas satu per satu ya. Mata Berakomodasi Maksimum Sumber Mata berakomodasi maksimum maksudnya adalah kondisi kita melihat teleskop dengan menggunakan mata yang terbuka lebar. Pandangan fokus. Dan konsentrasi tinggi. Kalau dalam serial Naruto, mungkin bakal begini nih. p sumber Saat mata berakomodasi maksimum, syaratnya ada dua 1. Sob = tak terhingga 2. S’ok = -Sn Sob = jarak benda ke lensa objektif S’ok = jarak bayangan ke lensa okuler Sn = jarak baca normal biasanya di soal 25-30cm Akibat Sob = tak hingga, maka fob = titik fokus lensa objektif Di teropong bintang, pasti ada yang namanya perbesaran lensa. Hal itu bisa kita dapatkan dengan M = Perbesaran teropong bintang α = Sudut pengamat ke bintang tanpa teropong o Β = Sudut pengamat ke bintang dengan teropong o Persamaan ini bisa kita sederhanakan menjadi; h = tinggi objek m Karena S’ob = fob, maka; Lalu, bagaimana cara untuk mencari panjang teleskop? Bisa kita temukan dengan menggunakan rumus berikut Karena S’ob = fob, maka hal ini juga berarti d = panjang teropong bintang m S’ob = Jarak bayangan ke lensa objektif Sok = Jarak benda ke lensa okuler Mata Tidak Berakomodasi Sumber Kondisi mata tidak berakomodasi adalah saat di mana pandangan mata kita tidak berada dalam kondisi “penuh konsentrasi”. Untuk penghitungan rumusnya, terdapat dua syarat juga 1. S’ok = tak hingga 2. S’ob = fob fob = titik fokus lensa objektif S’ob = jarak bayangan ke lensa objektif Dari kedua syarat itu, kita dapat turunkan rumusnya menjadi Karena S’ok tak hingga, maka; Lalu, untuk penghitungan perbesaran lensa teleskopnya; Karena S’ob = fob, maka; Di sisi lain, cara untuk menghitung panjang teleskop adalah Karena S’ob = fob dari syarat dan Sok = fok dari penurunan rumus, maka; Nah, sekarang sudah tahu, kan, bagaimana cara teropong bintang bekerja? Kenapa pandangan mata kita terbatas, dan bagaimana cara untuk memperbesarnya. Kalau kamu tertarik dalam pembahasan mengenai rumus-rumus yang ada di dalamnya, langsung aja tonton penjelasan lengkapnya di ruangbelajar! Selain mendapat penjelasan, kamu juga akan mendapat rangkuman infografik mengenai materi ini, lengkap dengan latihan soalnya, lho!
A 210 cm B. 180 cm C. 150 cm D. 120 cm E. 30 cm 70. Sebuah teropong bintang memiliki lensa obyektif dengan jarak fokus 175 cm dan lensa okuler dengan jarak fokus 25 cm. Panjang teropong dan perbesaran anguler teropong berturut-turut .. A. 200 cm dan 1 kali B. 200 cm dan 10 kali C. 200 cm dan 7 kali D. 250 cm dan 8 kali E. 250 cm dan 10 kali 71.
alihteknologi pembuatan teropong bintang sederhana untuk Download Sehah et al., Alih Teknologi Pembuatan Teropong Sederhana maka lensa okuler dapat diatur sedemikian rupa sehingga bayangan akhir dari lensa okuler berada pada jarak tak terhingga (Sok′ = ~).
Misalnya kita ingin melihat puncak gunung berapi. Kalau kita naik ke atas, resiko ancaman sangat besar. Untuk sanggup melihat dengan terang benda-benda yang letaknya jauh, kita sanggup memakai alat yang disebut teropong atau teleskop. Secara garis besar, teropong dibagi menjadi 2 macam, yaitu teropong pantul dan teropong bias.
perbesaranbayangan dan; panjang teropong; Sebuah teropong bintang mempunyai daya perbesaran anguler 10 x diarahkan ke matahari dan memberikan bayangan akhir di tempat yang jauh sekali. Tentukan berapa cm okuler teropong harus digeser agar dapat dibentuk bayangan pada layar 30 cm di belakang okuler. Jarak titik api obyektif 50 cm..
CyNBx0b. ei0nm8a60s.pages.dev/141ei0nm8a60s.pages.dev/585ei0nm8a60s.pages.dev/326ei0nm8a60s.pages.dev/323ei0nm8a60s.pages.dev/565ei0nm8a60s.pages.dev/438ei0nm8a60s.pages.dev/533ei0nm8a60s.pages.dev/424
perbesaran anguler teropong bintang apabila